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Technical Progress for the First Year (1993)
SUMMARY

Experiment : An energetic electron belt has been created in a laboratory terrella for the
first time. Measurements indicate the trapped-electron belt to be localized in radius and
have a non-Maxwellian energy distribution ranging from 10 to 40 keV. Using multiple
probes, we have clearly identified drift-resonant instabilities leading to rapid radial
transport. Transport in a dipole appears to require multiple modes, and its “bursty”
nature suggests a profile relaxation of the energetic electrons which self-stabilizes the
drift-resonant instabilities.

Theory : Substorms in the magnetosphere cause the generation of major electromagnetic
disturbances and energetic particles. We examine the role of the collisionless tearing
instability as a possible mechanism for substorms. Global asymptotic magnetotail
equilbria which are slowly varying in the Earth-Sun direction are constructed, including
all three components of the magnetic field. Some of these equilibria are analyzed for
stability with respect to collisionless electron tearing modes. It is found that the ion
tearing instability, which has been widely invoked as a possible trigger for subtorms, does
not exist. The By field is demonstrated to have a destabilizing effect on electron tearing
modes. Regimes in which collisionless tearing modes can grow are delineated.

THE COLLISIONLESS TERRELLA EXPERIMENT

The “Collisionless Terrella Experiment™, or CTX, is a relatively new laboratory
experiment built at Columbia University in order to directly observe the unique and
fundamental properties of collisionless radial transport of plasma trapped within planetary
magnetospheres. Collisionless radial transport in a dipole-confined plasma occurs only
when wave-particle interactions are sufficiently intense and broad-banded and when the
particle motion satisfies well-defined conditions for chaos. The primary goals of our
experiments are (1) to directly observe the conditions required for the onset of radial
transport, (2) to study the evolution of the plasma profiles undergoing radial transport,
and (3) to develop and test a generalized model for radial transport applicable to trapped
plasma in the earth’'s magnetosphere. This laboratory program is particularly exciting
since (1) CTX is the first collisionless dipole laboratory experiment capable of observing
collisionless radial transport, (2) plasma waves can be produced in the laboratory which
break only a particle’s third adiabatic invariant making radial transport relatively simple
to characterize, and (3) the impact of collisionless transport on a plasma’s global profile
is predicted to have an unique signature that should be readily identified.

Our first experiments with CTX have focused on the dynamics of an “artificial
radiation belt” consisting of trapped electrons with energies between 10 and 30 keV. The
electrons are created by adjusting our microwave plasma source for direct cyclotron
heating of magnetically-trapped electrons. The electrons generated have a collisional
mean-free-path longer than 1,000 drift orbits about the equator, and they provide the ideal
lahoratory medium with which to study colllisionless radial transport in dipole geometry.

Figure 1 shows the time history of a typical CTX discharge and the production of an
energetic electron belt. The discharge duration was arbitrarily programmed to last
approximately (.5 sec, and the several signals represent the time history of the ion-
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saturation current to a Langmuir probe, the hydrogen gas pressure, the forward and
reflected microwave power, and the x-ray spectra as recorded by a krypton proportional
counter. The experiment is fully computer controlled, and the gas pressure, pulse length,
and heating power can be programmed independently for each discharge. For discharges
similar to that shown in Figure 1, intense fluctuations are observed both during the
microwave heating and during the “afterglow™ when the heating power has been
switched-off. These fluctuations only occur in the presence of the energetic electron belt,
and we have characterized them as a complex and nonlinear development of drift-
resonant hot electron interchange instabilities (HEI). In some respects, the HEI is the
electrostatic “analog™ of symmetric electromagnetic kinetic Alfvén instabilities occurring
in planetary magnetospheres.

Figure 2 shows the probe tluctuations on a faster, 10 msec, time-scale. During the
microwave heating, quasi-periodic “bursts” are observed; whereas, during the afterglow,
the probe signals are seen to evolve more gradually. The quasi-periodic bursts
correspond to rapid radial transport of electrons from the belt region. This is observed
directly with a gridded electron detector and indirectly by large and negative decrease in
the probe’s floating potential.

By using very high-speed data recorders, we have identified the drift-resonant
instabilities inducing this rapid electron transport. Figure 3 shows a frequency
spectrogram of the instabilities occurring both during the microwave heating and during
the afterglow. During the heating, the quasi-periodic pulsations consist of relatively
wide-band signals ranging from 0.1 MHz < f < 2 MHz. In contrast, the instabilities
observed during the afterglow consist of a multi-mode collection of relatively coherent
rising tones. Closer examination of the quasi-periodic bursts during heating also show a
collection of rising tones. The difference in the frequency spectra can be linked to the
energy of the electron belt as measured with the x-ray proportional counter. When the
average belt energy is relatively low, (E) ~ 10 keV, (such as found during the heating),
the wave frequency is also relatively low. During the afterglow, when the cooler electrons
scattering into the terrella’s polar regions, (£) increases, and the frequency of drift-
resonant instabilities also increase. The rate of rise of the frequency is also linked to the
average energy of the trapped electron belt.

Multiple probes are used to determine the azimuthal and radial structure of the drift-
resonant waves. When the probes are located on the same flux surface, the two probes
indicate that the waves propagate in the electron drift direction, and the wave spectrum
consists of multiple azimuthal mode numbers, m, as well as multiple frequencies. When
the probes are separated radially, we observe the radial mode structure to be relatively
broad with complex phase-fronts characteristics.

Although the CTX experiment has been operating for less than one year, our early
results already have important implications for understanding the basic process of
collisionless radial transport in a dipole magnetic field:

»  First, transport in a dipole magnetic field seems to require multiple modes.
This is a unique property of the dipole magnetic geometry resulting from the
strong radial dependence of a particle's azimuthal drift frequency, wg o< L2,
where L is the equatorial radius of a flux surface. Global transport can only
occur with multiple modes since a particle does not remain correlated with a
single wave as it diffuses radially.

«  Secondly, the radial transport rate is fast. In CTX, large electron bursts
lasting only 10°s of drift periods are observed to cause significant transport.
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«  Finally, drift-resonant instabilities lead to transport causing self-stabilization
and continuous, quasi-periodic bursting. This is observation is important. It
implies that the transport-inducing waves also decrease the radial pressure
gradient of the electron belti—but do not destroy electron confinement
altogether. For a dipole magnetic field, the marginally stable pressure profile
scales like p o< L-20/3,

THEORY RESEARCH ON SUBSTORMS

During substorms, the magnetic configuration of the magnetospheric plasma is
rearranged drastically. The large electromagnetic disturbances and fluxes of energetic
particles can interfere seriously with the performance of spacecrafts. As discussed in our
original proposal (Section 2.1), the ion tearing instability has been considered by many as
a trigger for substorms over the last two decades. We have treated this problem
analytically, extending and questioning earlier results significantly.

We have revisited the problem of collisionless tearing in the earth’s magnetotail,
and gone beyond extant theories in two significant ways. Firstly, we have included the By
field allowed for a spatially dependent Bpy in our equilibrium model. Secondly, we have
demonstrated that the ion tearing instability, which has been suggested by many as a
possible trigger for substorms, does not exist. We find, instead, that if there is any form of
collisionless tearing, it must be the electron tearing instability. We have delineated

egimes in which the electron tearing mode can be excited. The conditions that favor the

growth of electron tearing are those in which the By field is large and the By field is very
small. However, if the Bp, field is significant, the electron tearing instability is weak, can
account for the slow growth phase, but not for the rapid current disruption and
dipolarization phase.

The results have significant implications for observations. They demonstrate that
the By field must be included in a global model of magnetotail equilibria, and call for
svsternatic studies correlating By and Bp fields with the occurrence of substorm onset.
Our results also question the prevalent wisdom among many that the collisionless tearing
instability can provide a universal trigger for substorms.

For further details, we refer to the attached paper which is to be published in the
Journal of Geophysical Research.



Global Asymptotic Equilibria and Collisionless Tearing Stability
of Magnetotail Plasmas

XIAOGANG WANG AND A. BHATTACHARIEE

Department of Applied Physics, Columbia University, New York, New York

Asymptotic tail equilibria which are slowly varying in the Eanth-San direction are constructed, including
all three compoueats of the magnetic field. These equilibria allow for spatial dependencies in 8, and 8y.
Some of these equilibria are analyzed for ,.ability with respect 1o collisionless electron tearing modes using a
fluid model which predicts, to within a nomerical factor of %'7, the growth rates derived from kinetic theory.
No ioa tearing msnability is foand. The By field is demonstrated to have a desubilizing effect o electron
tearing modes. In the asymprotic equilibria considered here, electron tearing modes can grow in the presence
of By in those regions where the stabilizing effect of electran bounce is small. Implications for numerical
simufations and observations are discussed.

1. INTRODUCTION

Ever since Ness [1965] reported observational evidence for a
neutral sheet in the Earth's magnetotail, the collisionless tearing
instability has claimed much artention as a possible mechanism
for magnetic reconnection in the tail. Coppi et al. [1966]
considered a simple neutral sheet in which oppositely directed
magnetic fields B,= B (z) face each other across the z=0 line
(in the x —z plane) and demonstrated that such a sheet is
unstable to the collisionless tearing instability [Furth, 1962;
Laval et al., 1966]. (We use here the standard solar
magnetospheric coordinates (z,y,z), with the x axis in the
Earth-Sun direction, the z axis in the south-north direction, and
the y axis , which defines an ignorable directdon, is chosen to
make the coordinate systemn right-handed.) In the simple magnedc
geomewy considered by Coppi et al., the neutral linez=0 isthe
source of the separatrix. Far away from the separatrix. the
plasma obeys the ideal magnetohydrodynamic (MHD) equations.
The deparwre from ideal MHD behavior occurs in a narrow
region near the separatrix. By considering the energetics of the
instability, Coppi et al. demonstrated that the dominant
contribution to the inverse Landau damping effect comes from
electrons, not ions. Thus this mode came to be known as the
“electron tearing” instability.

We consider now the effect of a large, constant B, field
superimposed on the model of Coppi et al. The presence of B,
introduces magnetic shear in the model. The separatrix in the x -
z plane grows out of the z =0 line. Drake and Lee (1977]
showed that collisionless tearing modes are unstable in this
geomerry. (Strictly speaking, the results of Drake and Lee [1977]
hold for a low-beta plasma without temperature gradients, as
shown by Cowley et al. {1986]). Since the electrons carry the
perturbed parallel current near the separatrix and provide the
mechanism for reconnection through their small but finite inerta,
this instability too can be classified as electron tearing.

Neither of the two cases discussed above are representative of
the Earth's magnetotail. Much emphasis has been placed in the
literature on the two-dimensional model
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with constant By, A, and B, [Schindler, 1974; Galeev and
Zelenyi, 1976; Lembege and Pellat, 1982; Biichner and Zelenyi,
1987; Bichner et al., 1991; Pellat et al., 1991; Kuznetsova and
Zelenyi, 1991]. For nonzero values of B, , this configuration
has no magnetic separatrix. (For useful discussions of the role of
separatrices in magnetic reconnection, we refer the reader to
Greene (1988] and Lau and Finn [1990]).) The absence of a
separatrix implies that reconnection or tearing (in the sense of
affecting a topological change) cannot really happen for
significant values of B,. It is widely believed that the "ion
tearing” instability can occur in these circumstances, but the
subject remains a matter of lively debate [Schindler, 1974; Galeev
and Zelenyi, 1976; Coroniti, 1980; Lembege and Pellat, 1982;
Bichner and Zelenyi, 1987, Pellat et al., 1991; Kuznetsova and
Zelenyi, 1991]. The analysis given in this paper mumns out to
support the point of view recently expressed by Pellat et al.
[1991], who have questioned the existence of the ion tearing
mode. This point of view has significant implications for
eleciromagnetic particle simulations of collisionless tesring
(Terasawa, 1981; Hamilion and Eastwood, 1982; Swift, 1983;
Ambrosiano et al., 1986; Swift and Allen, 1987, Pritchett &t al.,
1989; Zwingmann et al., 1990; Prichest et al., 1991] which can
shed valuable light on this controversial issue.

Recently, we showed that the inclusion of a constant B, field
in the model (1) can qualitatively change its stability properties
(Wang et al.. 1990; hereafter WBL]. Qur model, referred to here
as the three-component model, breaks with the tradition of using
two-component models in theoretical analyses of collisionless
instabilities in the magnetotail. However, just as in the two-
component model, the formation of a magnetic separatrix is
inhibited by the presence of a significant B, field Itis
therefore noi surprisui, hiat we found ihai the electron tearing
instability has a stabler parameter space and is much harder w
excite in the three-component magnetotail than in a configuration
with B, = 0. Furthermore, the growth rate of the mode is siow,
consistent with the growth phase, but not the expansion phase of
a substorm.

We now develop an equiliorium model which is more realistic
than considered heretofore in analytical studies of collisionless
tearing. As in WBL, we include the B, field. Fairfield and
others have noted that the B, field is & persistent feature of the
magnetotail (Fairfield, 1979; Catteil and Mozer, 1982; Lui,
1983; McComas et al., 1986; Tsurwiani et al., 1984; Sibeck &t al.,
1985]. Voigt and coworkers [Voigt and Hilmer, 1987; Hau and
Voigt, 1992] have shown, based on some analytical and
numerical examples, that the requirements of global magnetwstanic
equilibrium of the magnetouil should include B, The possible
role of the B, field in observations of substorm dynamics was
pointed out as early as 1978 by Akasofu and coworkers
[Akasofu et al., 1978]. From a detsiled examination of IMP data,
Akasofu et al. stressed the need for a three-component analysis of
magnetic fields in the magnetotail during substorms. Though
there are a number of other events reported in the literatare in
which an enhancement in 8, and a reduction in 8, is observed
prior to the onset of a substorm (Nishida et al., 1983; Bieber et
al., 1984; Lepping, 1987; Takahashi et al.. 1987: Lui et al.,
1988; Lope: et al., 1989], no systematic studies of substorim




events with correlated variations in B, and B, are available
yet.

One of the main improvements of the present paper over WBL
is the development of asymptotic equilibria with spatial
dependencies in B, and 3,, thatis, B,=8,(x2) md 8, =
B, (x,z) . These equilibria. and the single-particle motions in
them, are described in section 2. We show that these equilibria
change qualitatively our current understanding of collisionless
instabilities in the magnetotail by inwoducing new global
fearures not captured adequately by the model,

z
B=B°unh;§+8’§+8_;. (2)

with B, and B, consumnt In this geometry, the global boence
period t,, for electrons is much shorter than the growth time of
the instability when B, ~ B, . WBL has been criticized for
neglecting the stabilizing effect of this bounce [Bichner et al.,
1991; Priuchert e1 al., 1991]. This criticism would be justified
except for the fact that the model (2) is itself globally rather crude
and underestimates severely the bounce period in a stretiched
magnetotail. If we must include the effect of electron bounce, then
it is preferable to do so in an equilibrium model which captures
the global features of the magnetotail with greater realism than
equation (2). And that is precisely what we achieve by allowing
for spatially varying B, in the new equilibrium model. We then
show that there are regions where ¥t,, > 1 , and the electron
tearing mode grows, with a growth rate ¥, as predicted by WBL.
Furthermore, when we consider the special case B, = const in
which  yt,,<< 1, we find no ion tearing, contrary to the
findings of Biichner et al. (1991]. The persistence of slow
electron tearing, and the absence of ion tearing, are recwmrent
themes that are explored in detail for both two-component (B, =
0) and three-component (B, # 0) equilibria in sections 4 and 5.
Though the clectron tearing instability can account for the
growth phase of a substorm, it is not sufficiently rapid to
account for the current disruption and diversion that occurs at the
onset of the expansion phase (Takahashi et al., 1987; Lui et al.,
1988]. Elsewhere (Wang et al.. 1991], we have disrussed that
nonlinear mode-coupling effects may lead to a sigaificant
enhancement of the linear growth rate. It was implicitly assumed
in that discussion that a linearly unstable mode will grow o
sufficiently large amplitude that it can couple to other unstable
modes. However, that possibility was explored in the context of
the equilibrium represented by (2) which, as discussed here, has
certsin limitations. We suggest here that the circumstances in
which collisionless tearing can grow as a robust instability, not
only in the linear regime but also in the nonlinear regime, must
involve reduction of B, to extremely small values. We therefore
point to the possibilities inherent in the three-component
ssymptotic equilibria calculated in this paper. An interesting
property of these equilibria is that B, may be reduced to zero at
near-Earth distances when B, is space-dependent. This
possibility was first noted by Hau and Voigt [1992] whose
profiles for B, were different from ours, and who concluded that
for their class of profiles, the B, value required to reduce 8, to
zero is much larger than the average value of B8, in the piasma
sheet. For our class of profiles, we find that the reduction of 8,
to zero occurs for values of B, more in accord with observed




values. When B, vanishes, a separatrix can be formed, and
tearing instabilities can grow. Whether the nonlinear evolution
of these instabilities can actually account for the rapid current
disruption and diversion observed in near-Earth regions remains
an open question.

The layout of this paper is as follows. In section 2 we obtain
some asymptotic tail equilibria, both with and without B, . In
section 3 we develop a fluid model, including a generalized
Ohm's law, which allows the treatment of collisionless tesring
modes, and benchmark the predictions of this model with known
results from kinetic theory. In section 4 we use the energy
integral derived from our fluid model to analyze the stability of
the two-dimensional magnetotail without B, and constant B,.
We find that the ion tesring mode does not occur, and the only
possible instability, under certain conditions, is an electron
tearing mode. In section 5 it is shown that the inclusion of 38,
and a spatially varying B, can further destabilize the electron
tearing instability. We conclude in section 6 with a summary of
our resuits and their implications for observadons.

2. SOME ASYMPTOTIC EQUILIBRIA

2.1. Two-Component Equilibria

We begin by considering some asymptotic two-component
equilibria, i.e., equilibria for which B, =0. Assuming that the y
coordinate is ignorable, the magnetic field B may be written as

B = Vyxy, (3)

where v is 2 flux function. In equilibrium, for a charged particle
of type @, the energy Hy and the momentum Py, are conserved.
Assuming that there is no equilibrium electrostatic field, these
constants are

1 2
Hy=3m.va , (4)

PQ, = my Vg, +4.Vic (3)

where mg is the mass of the charge particle of type @, ¢4, its
charge, and ¢ is the speed of light. An equilibrium distribution
function can be writen as

fﬂ = rﬂ (Ha. pa,,) '
m 2 PV -H
=n, (——LG_ru): exp (Jm_JTG . )

where V, is the drift velocity, Tq is the temperature (in energy
units) for particles of type a ( = e, i for & hydrogen plasma), and
ng is the average number density of electrons and protons. The
temperature T4 is taken 1o be a constant. From the relation

R = Idvafa ' M

and the requirement of quasi-neutrality, n, = n;, we obtain the
conditon V, /T, = -V, /T,. They component of Ampere's
law gives

10



X 4
Vv = '_CE ;qa Idvu Yo

B Z‘U]
= =2 —_— 8
x exp{Bolf' 1G]

where
2c (T‘. + T.) %
a0, (
eB (V‘.’— V‘,)

defines a characteristic equilibriwm length scale, and the constant
By is determined by the relstion

Bi8x = ny (T, +T) . (10)

By is & measure of the lobe magnetic field. We scale the variables
X/A — X, Y/BoA— v, p/(By?/4n) — p, B/By = B, md
introduce & small, positive parameter € ~d/dx << 3fdz~1. In
this approximadon, a large class of equilibrium solutions of (8)
is given by [Birn et al., 1975; Birn, 1979, Zwingmann and
Schindler, 1980; Lembege and Pellat, 1982; Zwingmann, 1983]

v = - log (cosh [z flex)] /fex) } . an

where flex) is 2 slowly varying function of x. It follows that

d
8, = -5; = fle) nh [aflex)] . a2)

v e
Bz = Bn:az =t _—_f(u) - 2f’(ex) ranh{zflex)]p, (13)

where prime denotes differentiation with respect to the argument.
Following Lembege and Pellat [1982], we take flex) = exp (ex)
(x < 0). As a first approximation, almost all analytical studies
repiace (12) and (13) with

Bx= tanhz, (14)

B =c¢. (15)

However, this is valid only in the region Ixls 1, [z 0. It
cannot be assumed that this approximation holds for large x
close to the z = 0 line, for the equilibrium pressure balance
condition implies that dp/éx =~¢ which, in mun, gives p = pg -
ex, with pg consunt This means that the pressure increases
with x , which is unrealistic for the distant tail. A better
approximation for B, than(15)is

B.=£(l-zunhz). (16)

However, (16) does not represent realistically the x dependence
of B, (x2) which should tend to zero as |x|— e . It is possible
to improve on (16) by taking

fex) = exp(ex/(] —-ex)] (x<0). a7

11



We recall that the distance x is measured in units of A ~1 Rg.
For specificity, we take £=0.1, and define Lo=m¢!=10. The
scale Ly (~10R;) enables us to define three separate regions:
1. Near-Earth region. Ixl << Ly

In this region, using (17) in (12) and (13), we get

B, = umhz, (18)

ane(l-zunhz). (19)

2. Middle region, x| -~ Ly
In this region, since ex~ 1, we get

B,z ePunn('?y, (20)
B, =5 l~e"rumn (%), @

If we define B’ = ¢12B, 7 = ¢!2z and ¢ =2 ¢/4 , then
(20) and (21) become

B;: tanh 7, (22)

B '=¢(l1-7unhy?), (23)

which is the same as (18) and (19). In other words, the middle
region has the same structure as the near-Earth region, except that
the magnetic field in it is somewhat weaker and the current sheet
is somewhat wider.
3. Distant-tail region, IxI >> Ly

In the distant-tail region, taking the limit x/Lg — ~ =, we get

B, = ¢ anh 2), (24)

B, =0. (25)
Equations (24) and (25) describe essentially the configuration
first considered by Coppi et al. {1966], who found electron
tearing modes to be unstable. We caution that though the
qualitative fearures of the magnetic field as described by (24)
and (25) are reasonable, the far distant-tail region is outside the
strict domain of validity of the asymptotic solution (13). Here
we do not pursue this matter further, for the main focus of this
paper is on the investigation of collisionless tearing modes in the
near-Earth and middle regions. We also note that the nesr-Earth
configuration described above is not totally realistic for Ixl g
SRy because at these distnces, the Earth's dipole field, not
included in the model, plays a dominant role. Matching to the
dipole field can be carried ou, in principle, but is not germsne to
our considerations here. Figure 1 shows s plot of our asymprotic
two-dimensional model with the origin set (arbitrarily) st x = —
SRe 2=0.

We now discuss some [eatures of the single-psrticle orbits.
For a panticie of mass my and charge g, gyrating in magnetic
field B . the Larmor frequency is W,y = 9qB8/mgc , and the
typical Larmor radius is p.q = Vo/0.q . Whete v o =
(2T /mg;"* is the thermal velocity. Using typical il
parameters (see, for instance, Lui (1987]), we get p.,~ (0.5 -
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1)Re. Inbothregions 1 ard2, p, 21, p, << (scaled by 1).
Hence eclectrons may be treated in the guiding-center
approximation, but the ions are essentially unmagnetized.
Because of the z dependence of B, (x.z), the field lines are
more streiched as z increases than in the case of constat B,
(see Figure 1.). In the Appendix, we show that this has the
consequence that the average bounce period of electrons in both
regions 2 and 3 can be substantially larger than the bounce
period with constant B8,,.

It is interesting to note that the large separation in the
magnitude of the Larmor frequency ., and the average bounce
frequency ,, = 2r7,,! in our asymptotic equilibria (in those
regions where B, is weak) diminishes the possibility of low-
order resonances between the Larmor and bounce frequencies for
most particles, and the chaos that can result from such resonmces
[Chen and Palmadesso, 1986; Bichner and Zelenyi, 1987).
Hence, for equilibria with spatially varying B,, we will not
concern ourselves here with intrinsic stochastic diffusion as a
possible mechanism for the restoration of ion tearing. As to
whether stochastic diffusion can destabilize the ion tearing if B,
is constant has been the subject of debate recently [Peilat & al.,
1991; Kuznetsova and Zelenyi, 1991] and is an issue we shall
address in section 4.

22. Three-Component Equilibria

We now consider equilibria which are symmetric in y but
with all three components of the magnetic field nonzere. The
magnetic field B is represented as

B=B’3+V\yx§. (26)

The condition of magnetostatic equilibrium gives the Grad-
Shafranov equation [Voigt and Hilmer, 1987; Paranicas and
Bhanacharjee, 1989; Hau and Voigt, 1992]

2
Vzw+‘d—1-(p+%!—)=0. QN

whete p=p(y) and B, = B, (V) are two free functions. If we
set By =0 and uke p = exp (2y) , we recover (8) (in
dimensionless variables). We note that (8) also holds for B, =
const, in which case a class of asymptotic solutions can be again
consuucted using (11). The B, snd B, components for this
class of solutions has already been given in section 2.1.

We now consider the effect of a nonzero dB,%/dy on the
solution (11). Since ¥ is small and negative near z =0, we
make the expansion

B} = B-2b Y+, (28)

when by and b, are positive constants. If we order by ~b; ~
Iyl ~¢,thennear z=0 (11) can be modified as

V = - log (cosh [sAeYfen) + bx /2,  (29)

with flex) specified by (17). This yields B, = € +b;x
which implies that B, vanishesonthe z=0Oplaneat x = -
by/e . Hence an X-point appears on the 2= 0 line (inthe x -z
plane) at near-Earth distances (5 R, <Ix | $10 Rg). That the
spatial dependence of B, in a magnetosuatic equilibrium can
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lead to the reduction of B, to zeroonthe z =0 plane has been
recognized by Hau and Voigt [1992). However, for their class
of equilibrium profiles, they find that the 8, required to reduce
B, 0 zero is much larger than the observed average B, in the
plasma sheet For our class of pressure and B, profiles, this
limitation is overcome because the average values of both B,
and B, are of the same order.

The particle orbits and drift motions in the presence of B, has
been considered by WBL and will not be repeated here. Simple
considerations of particle orbits near z = 0, where (2) hoids,
shows that the main stabilizing effect of B, is to remove
electrons from the z =0 plane where the separatrix tends to form
in the absence of B,. The addition of the B, field provides the
electrons with another guided channel for motion near the 2=0
plane. Then, as noted by WBL, the growth of the elecaon
tearing instability depends on the competing effects of B, and
B, . As far as the effect of electron bounce is concerned, we show
in the Appendix that the bounce period in the stretched
magnetotail increases due to the x dependence of B, ; hence the
condition yT,, 2 1 is satisfied in the middle region. This, in
turn, implies that the stabilizing effect of the electron bounce is
weakened, and that the electron tearing mode can grow in the
linear regime not only for B, >> B, but aiso for B, ~ B, near the
2 =0 plane. However, we repeat for emphasis that in the lager
case, the growth rate is small, and the mode is likely o saturate
nonlinearly at a low amplitude.

In this section we have made use of dimensionless variables in
order to keep the notation simple. In the remainder of the paper.
we shall return to using the primitive physical variables.

3. ENERGY INTEGRAL

In WBL, the stbility of the plasma sheet was analyzed by
asymptotic matching of the normal mode equations in the inner
region, where finite particle inertia provides the recoanection
mechanism, with the equations in the outer region. governed by
ideal MHD. The technical details of such an spprosch sre
somewhat different from those involved in the Lyapunov
functional method (developed by Laval et al. {1966]) which relies
on the existence of an energy integral. We review, at first, the
stability criteria that follow from the energy integral. From the
linearized Maxwell's equations, it follows that

Jo[ & {£@ie) }es8]

¢
--ﬁda-:;Ele]. 30)
where all perturbed quantties are designated by the subscript 1.
We assume that the boundary conditions on the surface bounding

the plasma volume ensure that the surface term vanishes. Then, it
can be shown (Laval e1 al., 1966) tha

) 1 q e 2
Jers v, = LT [Bfav, Lo

org [ 2] an
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where

- d,
fla’fla'a_‘: Y- (32)

From (30) and (31), it follows that
-a—- ’
a‘ 825 =0, (33)

where

en fa[L (sies)

_%g {%“Idw,%vlzﬂ- Jav7,} /%‘-‘; }] (34)

The energy integral §2¢ is a quadratic form. If 32¢ is
positive-definite for all nontrivial permissible perturbations,
then the system is stable [Kruskal and Oberman, 1958; Laval et
al., 1966). In other words, a sufficient condition for stability is

s 20. 35)

Furthermore, for 2 Maxwellian distribution, since, dfg/ oHy =
—fo/Ta . We g&t

. i
%;J'dvf; —-IZT fav 722006

Equation (36) implies that for a Maxwellian distribution a
sufficient conditon for stability is

5w = Ia[;—u{nf+ E }

q d
__;_Z_g dvv —q-vf] 2 0. (X))
a

Since collisionless tearing modes have low frequency, the
electrical energy E;2/8x is much smaller than the magnetic
energy B¥8x, and can be neglected. The sufficient condition
(37) can be rewritten as

doful -

One of the difficulties presented by the energy integral 8% is
that the physical interpretation of some terms is not transparent.
We take for instance, the last term on the right-hand-side of (34).
Lembege and Pellat (1982) showed, by using a Schwarz
inequality, that the term has a lower bound which can be
suributed to the compressibility of the electron fluid. This
interpretation has been invoked repeatedly in the literature, but it
is worth noting that it was meant 10 hold for the lower bound, and
not the term itself. In fact it is clear that there is more © the
original term than elecron compressibility. The function 8%
represents the second variation of the total energy € whichisa
sum of the elecromagnetic field energy and the kinetic energy of

Y oy
; dvyv av‘" 0. (38

N|.-‘
oM
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the fluid. Since the perturbed kinetic energy of the fluid is
always positive definite, it must be associated with & manifestly
positive definite term in 82¢ . Thus it would seem that the last
term in (34) should involve the perturbed kinetic energy of the
fluid plasma, but this is not obvious. (The physical
irzerpretaton of the kinetic terms is much more transparent in the
energy principle of Kruskal and Oberman [1958] for a guiding-
center plasma, but this is not the model underlying the functional
(34) which has been derived from the full Viasov equation.)

In view of the interpretational difficulties of a fully kinetic
treatment, we propose a different approach for the study of
collisionless tearing modes in the magnetotail. This spproach
uses fluid equations, and the mechanism for reconnection is
provided by finite particle inertia in the generalized Ohm's law.
That this is a reasonable model for collisionless tearing modes
was suggested by Furth {1962, 1964). The point of view we
adopt here is that the energetics of collisionless tesring modes is
describable within a fluid model by using a generalized Ohm's
law. The wave-particle resonance condition (which is a kinetic
effect) is included in such a model by simply equating the growth
rate Y to kv, . where k is the wave number and v, the electron
thermal speed. (For sheared configurations, k is replaced by ky,
the component of k parallel to the magnetic field.) This ad hoc
resonance condition misses the detailed structure of the particle
distribution functions. However, we shall demonstrate that the
growth rate calculated from the model equations agrees, except
for an overall multiplicative factor of %72, with the results of a
fully kinetic treatment. One of the advantages of the fluid model
is that the energetics of the instability is much easier to interpret
physically. This will enable us to formulate s stability condition
which is both necessary and sufficient.

The linearized fluid equations are
du J><Bl Jle
pa, = P + ¢ ‘VPl- (39)
d
—8%L+V-(pu)=0. (40)
g o 2B M 41
vt e = i (1)
138,
VxE, == (42)
4
VxBl-TJl. (43)
py=n(T +T). (44)

where p; is the perturbed mass density, u is the perturbed fluid
velocity, p; is the perturbed pressure, n; is the perturbed
number density (n; = n,; = n;; by quasi-neutrality), and the
unsubscripted variables represent equilibrium quantities. We
note that the generalized Ohm's law (41) has a term proportional
to the electron mass, but none proportional to the ion mass. This
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can be readily seen by considering the more general form (see, for
instance, Krail and Trivelpiece {1986))

al B
WALl ( ux )
o T ™ (m'*'m‘.) E+—).

which reduces in the limit m/m;<< 1 to the form (41). Apant
from terms involving finite particle inertia, the generalized Ohm's
law contains other terms such as the Hall term, the electron
pressure gradient term, as well as terms involving the anisotropic
stress tensor. It can be shown that the first two do not
qualitatively change our results for the class of equilibria
considered here. However, anisotropies in the stress tensor,
which are an additional source of free energy, may alter some of
our conclusions. We do not consider pressure misotropies here
because it is questionable whether an instability that is primarily
driven by such a source of free energy should be classified as a
tearing mode.

We now use (39) - (44) 10 calculate the different terms in (30)
(neglecting, of course, the term E;2/8% which is much smaller
than the term B,2/8% ). We get

J, xB-u m
Jl . E1 = —l—c— + g; (‘—*3 112). 45)
2ne

The first term on the right-hand-side of (45) can be calculated
from the momentum equation (39) which gives

J,xBu 5 -~ 5
-5 (o)

c "
IxB
+ V-(_plu) —plv-u *“.-TL . (46)
Writing
A A
Bl=V\ley+Bﬂy. 47)
we get

JxB Jvy
“"TL=V‘(“TL)

Jy v
-TLV-u +~;Lu-VJ. (48)

Since oy /0t +u-Vy =0, andJ = J(y), we obtsin

c Y e

ov
VI m—mr J () = ,
u-vJ 7w = ar Ot (z.6x)

at (49)

where the prime in y’(z2,£x) indicates differentiation with
respect to 2 . Defining F = y'(z.ex) and substituting (46) ~
(49) in (45), we get

1 1

24,2 —_

7 PH +21tm2+8nF L)
4

Gt

m

"
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+V-@w-p V- u, (50)
where ©,2 = 4nn¢2/m, is the plasma frequency, and

;l = Pl _P'(V)Vl = pl —le/c. (51)
Equation (30) can then be cast in the form,

) -
3 825+¢da- [i E, x Bx*Px“] =0, (52)
where

Be=bW +5'W +5K+5Q =5 U+5K+5Q. (53)

Here
1 F
5W, = s—xjdx (af+; vlz) (54)

is the free energy of the magnetic field;

3 2 -
Z 5w, = [ &5 vu. (55)

can be attributed to plasma compression, and
50 = [ax (2m2) 13 (56)

is the "dissipation” due to finite electron inertia. Note that the
fluid kinetic energy 52K = [dx (1/2)pu2, and the dissipation
82Q are positive definite quantides. If the boundary in (52} is
chosen such that the surface term vanishes, then a sufficient
condition for stability is

5°U = azw/ +FW_ 20, 7

In order to develop confidence in the fluid model, we now
benchmark it with standard resuits from kinetic theory. For
simplicity, we consider an incompressible fluid for which ¥W,
=0 . Then, there are three terms in the energy integral (53) among
which 82K is the kinetic energy and always positive definite. It
is clear that a tearing insubility can occur if and only if there is
magnelic free energy available, ie., &W, <0, and there exists
simultaneously, a mechanism for dissipation causing 820
(which is always positive definite).

Let us first consider the equilibrium configuration (2) with B,
= 0. For this case the growth rate of the collisionless tesring
insubility is known analytically. The mathematical problem
divides itself neatly into two regions: the outer region, away
from z = 0, where the plasma is in quasistatic equilibrium, and
the inner region nexr z = 0 where inertial and dissipative effects
are important,. We rewrite (54) in the form

1 -2 2-2 F_"~z]
szwl- — Idx [v s 2] e

where v, = ¥(z, 1) coskx , F = tanh 2/ and prime denotes
derivative with respect to 2 . In the outer region, neglecting
inerda and dissipation. we get

v -2y -(FIPy =0. (59)
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Furth [1963) observed that if the first term in the integrand of
(58) is integrated by parts and (59) is used, §?W, reduces 1o

52w a =0 +
= _ —iL o o
a .
- -2 o W), (60)

T 16r
where [dx = a,,[dz ,ay, =[dxdy and the parameter Aq is
defined by the relation,
v (04 - ¥ ()
oo
(In obtining (60), we have used the boundary conditions

V(-w)= P(+ o) =0.) For the equilibrium (2) with B, =0, we
get (see, for instance, WBL)

A, =

(61)

.

by = 25 a-22). (62)
k)

On the interface between the inner and outer regions, the

Poynting flux is
@da- £ E xB
4x 1 1

,[{J sty - | d.xdy} 2K, x 31]

[n

4
w0 - =0 +
a ‘9 ~2 d 2
- At 4 2 =<
Tex 4 EYR4 (0) 3t $ € e (63)

Thus the magnetic free energy in the outer region is spent as
dissipation and kinetic energy in the inner region.

To determine the dissipation in the inner region, we use the
generalized Ohm's law,

1 ¥ m oA,
“c 9t Tp2 Ot (64)
where J,,:.-I', cos kx. Equation (64) gives
- c.2-
J’ ’-41!*0 v, (65)

where kg m @y/c. The dissipation caused by electron inertia in
the inmer region is

g =44,
2 kq J’ -2
8§Q =a_ — dry
o 16n

z =-d,
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2
ky -~ 2
=4, o d, w0, (66)

where d, is the width of the tearing layer.
Requiring that the system energy be equal to its equilibrium
value [Kruskal and Oberman, 1958), we get

5% = alwf + 8K +80 = 0. (67)

For the electron tearing instability, the fluid kinetic energy 52K,
which is dominanuy due to ions, is much smaller than the electron
dissipation 5%Q . Hence, from the relation

5zw/ +58Q =0, (68)
we obtain the tearing layer width [Drake and Lee, 1977}
Ay
d‘ = d‘ k) = - - (69)
2k,

The growth rate of the instability can be determined by using
the wave-paricle resonance condition. In the case 8,=0 this
condition is

Y=kv,, (70)

where k is determined from (62) by the requirement A, >0
(8%Wy < 0). From (62) and (70) we obrain

v 2,2
Y= T =N, 7
ko Ad,

Vi p‘ 2 T" 2,2
= (T) (T)’ (‘*r_‘) (1-kE1). (12)

In writing (72) we have made use of the equilibrium relation (10).
The growth rate (72) is larger by e factor ®!2 than the result
obuained from kinetic theory by Laval et al. [1966].

Inthecase B, = 0 the resonance condition (70) is modified to

Y=kv,. (73)
where ky = kd, /A . Equations (62) and (73) then yield
kv A'
= —"2—2' (74)
2k A

which is also larger by the factor %!/2 than the result of Drake
and Lee {1977).

Equations (71) and (74) demonstrate that the fluid model is
relisble as a predictor of the parametric dependencies and the
order of magnitude of the growth rate of collisionless tearing
modes when B, =0, both with and without B, . The numerical
factor missed by the model has to do with the precise details of
the electron distribution function.

In the last paragraph, we have used the term “collisionless
tearing” instead of “electron tearing,” though the latter name is
commonly used. It has been shown elsewhere (for the case 8, =
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0) that the full ion dynamics gives small logarithmic corrections
to (74) (WBL, Appendix A}. In other words, the result (74)
already includes the ion response, and there is no ion tearing
branch of the dispersion equation. That being so, it is redundant
to call this tearing instability electron tearing because in this case
there is no other form of tearing.

4. EFFECT OF CONSTANT B,

So far, we have benchmarked the fluid model by reproducing
known results from kinetic theory for equilibria with B,=0.
We presume that a fluid model which has been demonstrated to be
reliable for B, =0 will work for equilibris with B,= 0,
representative of the Earth's magnetotil. As discussed in WBL,
what will change in the presence of a nonzero B, are the particle
orbits. We consider, at first, the case B, = constant (equation
(15)) which has engendered considerable controversy in the
literature.

In the presence of B, the permurbed current has a component
Jy; inthe z direction which genersies a perturbed magnetic
field component By,. In WBL, this component has been
calculated by writing B; = V x A; , using the Coulomb gmuge V

-A; =0 and the approximation 9/dx << 9/dz for perturbed
quantities. Here we denote ) = Ay, X) %Ay, and wrile

.2 oy
Blavy + (—L)l (75)
Substimting (75) in (54), we have

v
SZW -—jax[w, (31 ’:wf»,a”] (76)

We take %, = X,(2.t) cos kx . In the outer region, we have
[WBL, Appendix B]

7 -F% =0, (77
which has a solution of the form e8!, This solution has a jump
continuity in its logarithmic derivative, specified by

© X (0 =% (0-)

Agm S—————— = - 2. (78)
x (0)
In_the Coulomb gauge, we can now write B,,? = k2G - i

x) Then, the comnbuuon of the last erm m t.he integrand of
(76) is - (a,, /16%) A" %3(0) . This has ‘s clear physical
interpretation: B, reduces the magnetic free energy available o
the tearing instability and hence has a subilizing effect.

The computation of the first three terms in the integrand of (76)
is somewhat more involved. One of the complications introduced
by B, is that it introduces a phase shift that, in effect, couples
the cosine solution in x,i.e., V. (2.0) cos kx with the sine
solutions in x, i.e., ¥, (22) sin kx . In the outer region equation,

3 Kadl
viy avistend Py a9

substituting
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v, = \7;:(:.:) cosix + G‘(z..'):in'c . 30

we abtain

- - M (3 -- L-’
Koy, = Wiy -&v) - =, ~Fy), @31

K@ - @ - F). @

where A’ = A~! unhz/A . Following the method oudined in
Appendix B of WBL. we get

- @ 2
U= U ey, e &), )

¢

¥ = 00z ey eue), 34)

z
wiere the ypper sign in (83) and (34) comresponds w0 1> 0, the

lower sign o 7 <0, g b = 4f(k Ay 3?) . The leading orcer
sciudons \TJ md u ooey

-0 ~(0)" 2200
T - () - ))

(£

35

We now use (81) - (35) 10 caiculate the frt three =xms in W,
. These are

2 1. 3‘-'
) 'Vv = ;: J &x [\m - q-(F"/F)wl:l R

.2 2

= he-73 fax[w +zzv *lf_'vz
16r¢ ¢ ¢

l: 2 -2 h- -2
- -k Y, + = V ] (86)
Intagradng the right-hand side of (86) by parts and using (31)
and (32), we zet

.

(0)
2 4. A% ¢
,sz -t AQ‘JQO) ,—[J"zd_(i( vﬂ)

-« —-(""‘”)]. o

where $7(0) 3 9, 40) - 9,40). Since 3@ md ¥, ® are
both solutions of (85) and odey the same boundary conditions,
the [ast two werms of (37) cancel each other exacily. Defining

8710 a4 20
Af = _z _-: . (88)
v (0)»1(0)
and using (37), we get
2 e a1
) 'V/ = -'1'6'; A’ (V 0+z (0)) . (£5]
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We now evaluate 82W, , which is due to plasma
compressibility. If B, is large and constant, then the inequality
YThe << 1 is satisfied. Under these conditions the electrons have
a stabilizing compressional contribution due to the bouncing
motion between mirror points along a field line. However, the
effect of ion compressibility, which comes into play because of
the quasi-neutrality constraint 7, = n;; , is larger than the effect
of elecwon compressibility. The magnetic free energy W, is
generally not large enough to provide energy for compressing the
ions, and the mode is stabilized unless the wavelength is very
large. In order to demonstrate this, we calculate §2W, from the
fluid equations. From the linearized continuity equation, we get

19% d
Viu = == -u-Vy —ha. (90)
‘Vdv

R=n-— v . (91)
we rewrite (90) in the form

on 2 (v
3!'30).(3' +u-Vw). (92)

Averaging (92) over an electron bounce period, we have

Veu=-

a o=

Yoo 2
<V-u> = —;QD-BO), (7<wl> +8, <ul,>). 93)

where <> indicates an average over the rapid bounce motion of
the electrons. Since the bounce motion involves dominantly the
outer region, we neglect the electron inertia term in averaging
Ohm's law (41). We then obtain

l % <V x) Bn
<EI’> == < n = _-I_C . (94)

Using (44), (51), (93), and (94), we get
=g k2 9 2
<p, Vu> = -—2ano(T‘+T‘.) <3: W1>
. L.}

2
2
k“8

3 2
= ? <3 w> 93)

16n Bn

Hereafter, to simplify notation, we shall drop the averaging sign.
Equation (95) then gives

2.2

kB
8w :J.d—x — (96)
¢ 16n 232

A

Equation (96) can be rewritten as

2 2 szO ~2
W, = =2 —5 1 (0. (87)

where
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2
2, = ZJ dz exp(-2kz) [1 + tanh zﬁ\] . (98)

Equation (97) agrees with (91) of Galeev [1984] (except for the
area term a,, which has been taken to be unity by Galeev
without loss of generality). The constant 2o is estimated by
Galeev from physical arguments; here, we evaluate (98)
asymptotically to obtain

2, = 1k . 9)

Note that an upper bound for §*W, is obuined by seing %
(0) equal to zero. Hence, from (57), a sufficient conditioa for
stability is

—a, + kE*2 0, (100)
which for £<< 1, reduces to

e 2 2. (101)

Equation (101) is close to the sufficient condition for stabilicy
kA/e 2 4/n , derived by Lembege and Pellat (1982]). The
inequality (101) implies that all wavelengths smaller than T/
are stable. For example, if we take A ~1Rg, £~0.1, wefind
that wavelengths smaller than 30 R are stable. Of course, this
does not necessarily mean that wavelengths larger than /e are
unstable because violadon of (101) does not imply instability. If
one proceeds with the hypothesis that instability is possible for
kMg < 2, it can be shown, following Lembege and Pellat (1982],
that a long-wavelength ion tearing mode is impossible. We refer
the reader to the work of Lembege and Pellar {1982] for further
deuails.

Anempts have been made to restore the ion tearing instability
by invoking pitch-angle diffusion (Coroniti, 1980; Galeev, 1984
and references therein) or intrinsic chaotic diffusion [(Bichner et
al., 1987]. We now demonstrate that even in the presence of
these effects. the most that we can get is some form of weak
electron tearing and that there is no ion tearing. At first we note
that occasionally, a source of some confusion in the literature has
been the misleading premise that it is electron compressibility
that stabilizes tearing in the presence of a constant 8, . From
this premise follows the argument that if the electrons are
removed by pitch angle scattering or intrinsic stochastic
diffusion, then it is possible 10 neglect the elecrons while the
ions tear field-lines. Our fluid model clearly indicates that
elecoon compressibility is less of a factor than ion
compressibility for conditions typical of the magnetotil.
Inspection of (95) shows that both ions and electrons contribute
to 8§2W,, but the electron contribution o §2W, may be
apportioned as [T,/(T+T,] 82W, , whereas the ion
contribution is [T,(T+T,] §2W, . Since T;= ST, is typical in
the magnetotail, this apportionment indicates that the dommant
contribution to fluid compressibility comes from ions.

In order tw pinpoint the differences between our results and
others in the literature, we refer the reader to the review by
Galeev [1984]. Galeev's equation (91) gives the energy spent
for plasma compression, in agreement with our 83W .
Subsequently, in the presence of pitch angle scattering, Galeev
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atributes 2 compressional term similar o 52W, entirely ©
electrons (see his equation (96)). and yet another contribution
due to0 ions (his equation (97)). Our fluid model yields the

compressional energy,
2,2
Sw - 4, k 820 Y
€ l6m gpt Y+ Vy

3,970, (102

where v g is the bounce-averaged effective collision frequency.
Note that when vy =0, (102) reduces to (97), as it should. (If
Vegr >> ¥, then the factor ¥/(Y + Veg) can be approximated by
Y/Vesp). Thus 32W_ (our equation (102)) includes the
compressional effect due to both electrons and ions, and that
there is no separate ion contibution as Galeev's equation (97)
suggests. For large v 4 (or equivalently, large stochastic
diffusion), the stabilizing effect of 82W, can be strongly
reduced. Under these conditions, it is possible, in principle, to
recover an electron tearing instability, but there is no ion tearing.
This conclusion supports the recent results of Pellat et al. [1991)
who question the very existence of ion tearing, but contradicts
the findings of Kuznetsova and Zelenyi [1991].

In view of the controversy in analytical theories, much can be
learned from particle simulations. Unfortunately, electromagnetc
particle simulations of collisionless tearing inevitably involve
making compromising choices on such parameters as m,/m;, the
system size (which determines the range of unstable
wavelengths), and the spatial grid size. We have cited several
such simuladons earlier, and it is fair to say that in all of them, an
instability with the theoretically predicted growth rate and
characteristics of ion tearing has been very difficult to find.
Since we believe that both electron and jon dynamics (which are
tied by the constraint of quasi-neutrality) should be retained in
simulatons of collisionless tearing, we first comment on reported
results from two-species simulations that include a B3, feld.
Swift and Allen [1987, P.10,015] report that their previous
unpublished work showed “no evidence of the development of
any type of instability.” They also atiribute correctly the
observed stability to ion compressibility. Zwingmana et al.
[1990] report results mostly for the mass ratioc m,/m; = 1, with
some discussion of a case with m,/m;=1/10. As they note, the
case m,/m; =1 cannot distinguish berween electron and ion
tearing. (If an ion tearing mode exists, its growth rate should be
much larger than the elecon tearing growth rate when the mass
ratio is realistic.) Their results show significant discrepancies
with theoretical predictions (Schindler, 1974)]. In parnticular, the
growth rate observed in the simulation is up to an order of
magnitude less than predicted by theory. We auribute the
growth of the instability in these simulations for small values of
B, to0 electron tearing, not ion tearing. This hypothesis can be
tested, of course, by a study which computes the growth rate as a
function of m/m; .

Apart from two-species simulations, there are one-species
simulations of the ion tearing mode in which the electrons are
involved only as a static charge-neutralizing background
(Terasawa, 1981; Hamilton and Eastwood, 1982; Swift, 1983;
Ambrosiano and Lee, 1983; Pritchert et al., 1991]. It is clear
from our previous discussion that these simulations camnot
realistically simulate electron tearing modes. Furthermore, any
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inference on the viability of the ion tearing mode from these
simulations is questionable because electron dynamics has been
eliminated arbitrarily for reasons of computational convenience.

We conclude this section with the remark that unless the B,
field is very small, field lines cannot reconnect w form islands in
the linear regime. The striking contrast between configurations
with B, =0 which tear easily to form magnetic isiands and
configurations in which significant values of B, inhibit tearing
is illustrated well by Figures 6.2.4 and 6.2.9 in Galeev's review
paper. In Figure 6.2.4, islands develop at the separatrix where
collisionless reconnection provides accessibility to a state of
lower energy. In Figure 6.1.9, there is no well-defined seperatrix,
and the system sustains global compressional oscillations.

5. [EFFECTS OF B, AnD SPATIALLY VARYING B,

WBL considered the effect of a constant B, field
superimposed on the two-dimensional configuration of section 4.
Their analysis of the electron tearing mode dealt with the mner
region dynamics using kinetic theory, but global aspects of the
dynamics such as the bounce motion was neglected. The aim of
the present effort is to explore the consequences of these global
effects in the context of the improved asymptotic equilibria
developed in section 2.

At first, we consider equilibria in which B, is constant, and
the spatial dependencies of B, and B, are described in region
1 (near-Earth) by (18) and (19), in region 2 (middle) by (20) and
(21), and in region 3 (distant-tail) by (22) and (23), respectively.
As noted in section 2, the spatial structure of B, in the near-
Earth and middle regions are similar, except that the magnetic
field is weaker and the current sheet is wider in the middle
region. It is shown in Appendix A that the bounce period T, in
region 2 is larger by an order of magnitude than t,, inregion 1.
In region 3, since B8, is vanishingly small, t,, is extremely
large.

Certain conditions must be fulfilled for the electron tearing
instability to occur. First, there must be magnetic free energy
available to drive the instability; i.c., we must have 8°W,<0,
where W, is given by (89). This means that the stability
parameter A, must be positive. In standard analyses of
collisionless stability of the tail (see, for instance, Galeev [1984,
and references therein]), A, is replaced by Ay . Note that this
overestimates the range of unstable wavelengths because A,
(equation (78)) is negative.

Second, the subilizing compressional energy §2W, due 10 the
bounce motion of electrons should not exceed the destabilizing
term &W, . We show, a posteriori, that in region 1, Yt << 1,
but in regions 2 and 3, we have yt,, 2 1 and yT,,>> 1,
respectively. The compressional stabilization is thus significant
in region 1 but not so in regions 2 and 3.

In regions 2 and 3, the effect of the electron bounce can be
neglected. We are then back in the framework of WBL who
obuined the dispersion equation for electron tearing modes
neglecting electron bounce. From a kinetic analysis, carried out
in Appendix B, we obtain the complex frequency ® = Wy + 7y,
where
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in region 2. Here ®,=kV,; , 59 is 8 constant which can be
shown to have a numerical value of ap oxxmuely 10 under
typical conditions, L, = A(B, 24 B.2)12/Byand A;= 8el(kdqy
A << A, Forcompmson. werecall!.hauf B,=0, the real and
imaginary parts of the complex growth rate are, respectively
[Drake and Lee, 1977], given by

Q, = 0,, (105)

Y= L k:" Ag . (106)
‘\/—7‘_ 2"0 L;
In (103) and (104), all equilibrium quantities are evaluated at z =
0. In particular, since W(0)/ %(0) = B,/B,(z = 0), we can write

2. . 2 ’
. a Ag +€ Ay
a, 22
aQ +E

(107)

where a = B,/Bg. If a ~¢ , 2 necessary condition for
instability is

A,

A+ A >0, (108)
which gives
B<1/V2. (109)

Equation (109) implies that wavelengths larger than 2‘[5 ®A (=
9 R, for A =~ 1R;) may be unstable. In order for the instability
to grow, however, it must also sadsfy the condition yt,,21. A
viable class of instabilities is obtained for &~} 2 3A ; these do
obey the condition yty, > 1 for 5o = 10, v, = 2Ns.

If B,<<B,,ie.c>>a,the condidon A, >0 for instability
reduces to kA <a/e . As shown by WBL, this condition
predicts unstable wavelengths which are much too large to
account for reconnection events in the near-Earth and middle
regions.

We note that (104) and (106) have been obtained from a
kinetic analysis, and except for & factor of &!/2 , can also be
obtained from the fluid model The fluid analog of (106) is (74),
derived in section 3. The fluid analog of (104) has been derived
in Appendix B, and is given by

kv s,
v= ==L, (110)
2k, L,
As before, the results from the fluid and kinetic calculations differ
by a multiplicative factor of x}/2,
In regions where y1,, 2 1, the destabilizing effect of B, may

be understood as follows. If B, =0, Galeev {1984] points out
that the energy spent for plasma compression is the work done
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by the perturbed plasma current generated by the perturbed
pressure gradient,

3%, J,,Ba
L _ iy ®
3 = e - (111)

If B,*O. (111) changes ©

¥, 1 - -
1 _2
L =2 U,,8,-7,8,). (112)

Now, if Ty, << 1, then the bounce average of (112) should be
taken, and the second term on the right-hand side of (112)
averages to zero. On the other hand, if Ty, 21, 0r Y1, >> 1,
then there is no bounce average o be taken, and the second term
tenids to reduce the first term because 71,/71, - B,/B;,

There is some evidence in the numerical simulations of Swift
and Allen [1987] that the presence of B, enhances the tearing
activity near z=0 compared with the case B,=0. (See their
section 43.) Clearly, there is & need for two-species simulations
including By using either asymplotic equilibria of the kind
developed in this paper, or numnerical solutions of the equilibrium
Grad-Shafranov equation [cf. Voigt and Hilmer, 1987).

Finally, we comment on equilibria with spatially varying B,.
discussed in section 2.2. There we show that, for a class of
pressure profiles, the spatial variation of B, can cause the
formation of an X pointon the z=0 line. We show, furthermore,
that this can occur at near-Earth distances for average values of
8, and B, characteristic of the plasma sheet. The configuration
thus formed is likely to be highly magnetically stressed. Under
such conditions, rapid reconnection may occur at the separatrix
in both the linear and nonlinear regimes. We conjecture that the
collisionless reconnection rate in this geometry is likely to be
much larger than the rates derived in this paper. Such a geometry
calls for a separate treatment, and the exploration of that
possibility is left to future work.

6. CONCLUSIONS

This paper makes two main contributions to the problem of
collisionless tearing modes in the Earth's magnetotail. The first
involves the development of asymptotic magnetotail equilibria
including all tree components of the magnetic field, with realism
in the modeling of the normal component of the magnetic field, B,
(x.z) . The second involves the development of a fluid model that
is physically transparent and accurate in reproducing the
parametric dependencies of the growth rates of collisionless
tearing modes calculated from kinetic theory.

One of the significant conclusions of this paper is that the ion
tearing mode, which has been the subject of considerable research
and controversy over the last two decades, does not occur. This
is tue for both two- and three-component madels of the
magnewwil. We are not the first to suggest this, because
Lembege and Pellat (1982) and Pellat et al. [1991] have preceded
us, albeit in the context of the simple two-component equilibrium
(1). We find that for the two and three-component equilibria
given in this paper that if there is a collisionless tearing
instability in the magnetotail, it is the electron learing mode.
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There are certain conditions that must be fulfilled for the
electron tearing mode o be seen. A significant value of B8, in
the two-component magnetotail, represented by (1), tends to
suppress the instability. The reason for this strong stabilization
can be understood in dynamical terms. In our view, the dynamics
are a symptom of a deeper cause which has to do with geometry.
The main cause of the stabilization of the tearing mode is that B,
destroys the separatrix at z =0. By contast, if we set B, =0
but include a B, field, the separawix at z = 0 is undisturbed,
and electron tearing modes can easily occur.

The main difficulty posed by the magnetotail is that all three
components of the magnetic field can be significant. Then, the
circumstances that favor electron tearing are those that minimize
global features of the dynamics such as electron bounce, and keep
the electron confined near z = 0. It is intuitdvely clear that the
B, field tends to confine electrons near z =0, and hence helps
the electron tearing instability grow. The asymplotic equilibria
presented in this paper have regions where the stabilizing effect
of electron bounce can be neglected and where the presence of B,
~ B, can cause the excitation of electron tearing. A tearing
instability in which field lines actually undergo genuine
topological change does not occur unless B, is very small.
Unless topological change occurs, the instability is likely to
saturate nonlinearly at a relatively low amplirude. We do not
believe that such a weak instability can account for the dramatic
signatures associated with current disruption and diversion
during substorms.

The instability is more interesting when B, is zero. We have
demonstrated that if we include B, and allow it to vary spatally
in a three-dimensional magnetotail equilibrium, then B,can
vanish at near-Earth distances. The linear as well as the nonlinear
growth of electron tearing modes in such a configuration is likely
10 lead to interesting results and will be investigated in the near
funse.

An important challenge for a theory of substorms is that it
should account not only for the violent activity that is associated
with substorms, but also identify conditions under which the
magnetotail is stable. A universal instability that occurs always
and spontaneously is likely not to be a correct explanation
because that would suggest the magnetotail is always unstable,
which is not observed to be the case. In this work, we have
identified conditions under which electron tearing modes may be
unstable and delineated regimes when they are not It is our hope
that this paper, as well as its forerunner (WBL), will stimulate a
reexsmination of old as well as new data in substorms with a
renewed emphasis on the B, field. Observationalists, many of
whom we have cited here, have been aware over the last 15 years
of the ubiquitous presence of the B, field, varying spatially as
well as in time before and during different phases of a substorm.
What is required is a more systematic study correlating B, and
B, with the occurrence of substorm onset. More two-species
electromagnetic particle simulations, including all three
components of the magnetic field, are also required, both to check
snalytic theory and to model realistically global features of
magnetotail equilibria.

APPENDIX A: BOUNCE MOTION OF ELECTRONS
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An electron gyrating along a field line in the magnetoil may,
under certain conditions, bounce between two turning points.
Since B,(x,2) = B,(x, - 2), the z coordinates of the turning
points may be written as z =t z,, where the constant 2, is
determined by the parallel energy of the electron,

1 2 1 2
zmv” =omyv -pB = K-uB, (Al)
where 1L is the magnetic moment. The bounce period is defined as
-
b (' (A2)

where [ is the coordinate along a field line. Using the relation
dl [B=dl/B, ,wehave

z’

12 B dz
pee (@) ey,
b oj k) B, q-pwim)'?

We recall that B,~tanhz and B, =~ €(1 -z tanh z). For |zl <
1, we use the approximations B, =z and B, =~ &(1 - z%).
Since B,(z=2%1)=0, we need consider only the domain 0 <
l2] < 1. Equation (A3) may be then approximated as

22,172

e 2 21
‘:b:Ld[dz ['2”‘ =LBN )
&, (1-2z7)[1~B(2)/B(z,)]

Defining u? =1 -1/z,, we get

l-u

822)J 2
T, = e ——> . (AS)
*Tev -2 (-4

If we take B,=¢ everywhere, as in Lembege and Pellat [1982],
we get

2
82
1‘,:-—'-!(1-.")4“ 162, (A6)
¢ vu 3e V:O
For z,~ 1, equation (A6) predicts a bounce period of T, ~ 25 5
(for £ ~0.1 and v, ~ 2/s) . We show below that this is much
smaller than the bounce period in our asymptotic equilibria.
The integral (AS) can be evaluated exactly to give

1, = —— [(1-:,’\"" w2, 0-57""7}

y =
£v,
2,172
1 2.-112 (1+2,) +12
-3 +z) 7 log ——7— |. (AT

(l"‘l‘) -4

Clearly, 1, — o, as |z,] — 1; this means that some electrons are
lost and some have very large bounce periods. An average
bounce period for the confined elecrons can be obuained by
averaging over the distribution function of electrons. For fixed
2 we have
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v

3 2
m, 12 -mv,
<t >= dv, mr | e*P T, T, . (A8)
-V

&

where v, is the maximum parallel velocity above which the
electron is lost. Note that (A8) underestimates the bounce period
because it should be normalized by the fraction of confined
electrons which is smaller than 1. Since all bouncing electrons
pass through z = 0, we take the distribution at z =0 1o be
Maxwellian. We estimate v, = v, [B(z = 1)fe - 1]}/2,
Asymptotic evaluation of the integral (A8) gives < 1> =
3en/ev,. For €= 0.1, v, = 2s,weget <Tp> = 10%¢ in
region 1. In region 2, since B, is space-dependent, £ is replaced
by & me}2¢/4, and the length scale is amplified by e!/2 (see
section (2.1)). Then < t, > is amplified by a numerical factor of
approximately 4e!2, which gives <tp> 2 10%s. Fory=10"3s ,
we thus have Y<t,> << 1 inregionl,but Y<t> 2 1
region 2.

APPENDIX B:
DisPERSION RELATION FOR ELECTRON TEARING MODEM

In order to keep this paper self-contained, we review here the
derivation of the dispersion relation for electron tearing modes
using kinetic theory. The main effort lies in calculating the
perturbed current J, from the perturbed distribution function
Jfia by means of the relaton

Jl = %quj’dv vflﬂ' (Bl)
It is convenient to use (32) to write
of. ~
fxugs\:"’x*/la' (B2)

We recall that [Laval et al., 1966; Galeev. 1984]

of 1
z dvv=_y =5 ———y 3. ®3)
3 q°I v ¥1%2n lzcoshz(z/l) 1

Hence, from Ampere’s law,
Jl=-ﬁVzAl=§andvvfm. (B4)

i,,éz_ Ar—2—y)
axt azt) ! lzcoshz(ﬂk) !

we get

4% I -
"'?;qa dvvi . (B3)
From the linearized Vlasov equation it follows that

iz 4
d‘flca-ra El'vfoao (36)
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where d/dt= 3/9t+v+-V and foq is the Maxwellian
distribution. Integrating (B6) along characteristics and
substituting the result in (BS), we get

E L ) DI T
ax” 3:2 ! lzcoshz(z/l) !
2
4r
--Z -T“— dv v(t)j VIOYE, (0) fo () &

4

"Tg'El' @B7)

where g is the collisionless conductivity tensor which can also
be written as (see, for instance, Horton and Tajma [1990]),

2
A =-§ qT'T Jdvd[dtv(r) v(t - 1)

x fm(r-t) exp [iwt -ikjtvx(() aril. (B8)

Near z =0, in the inner region |3/3z] >> [9/8x| ~ 1/A. Then
g) can be diagonalized in the form

o 0 0
P 4
(E; = 0 Ot 0 v (B9)
0 0 ¢

where X =% 1=a,y -a,, b =B/B =a,y+@,7 with
a,=B8,/B and a,=8,/B. We wzrite Eye=a,E1y - a,Ey,,
Epn=0a,Ejy+ oy, since @ +a, =1

Defining v, ® Ay, %1 ® Aj,, and writing, as in WBL, any
perturbed quantity such as ¥ in the form y(z) exp(ikx - iw1) ,
we get

«fw A

4“ dz

¢
ta
et

-~

= ay°lEI + axoLEt.

2 2 - o
= (07 o+ @ ol) E,+ u’u' (aII - aL) E' . (B10)
where G| = G, = O,. Similarly,

—f' = (a,zalﬂx:cl) E

£
4ax dz :

E . (B11)

+ -
G,G' (CI'll G.L) y
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The parallel conductivity ©j can be calculated by using the drift-
kinetic approximation for electrons. It can be shown that [Drake
and Lee, 1977; WBL, 1990]

2
- m . 2 -
Jy =i 5 (@-")s"Z() E, (B12)
ino
where
2
;._)L . 2
q = i~ 3 @-a)s Z() . (B13)
ino

where ©° =kV,;, s = 0/kv,), and Z(s) is the plasma
dispersion function.

The perpendicular conductivity o, is mostly due to the ion
polarization drift, since the E x B drift carries no current. The
full ion response [Cowley et al. 1986; WBL] essentially reduces
to

p nm‘cz .= . cz =
Jy == (i0E) = -iw ) E. (B4
B v,

whete V, = Bi(drn m;)1? is the Alfvén velocity. Note that

o &
G.

2 22
A (Dp:

<

2
v 2 m
= 5,'-”2— <<£2‘ = L1077t (B15)
KV kK, Mo
0”a 0

for magnewtail plasmas. We then recover the result derived by
WBL. ie.,

Pl
dz2 i
o’ a.
4niw Y y'z v
= -3¢ Y1 @6
¢ a.a a? X
y%z z

We now introduce two characteristic frequencies. Oneis @, =
kyv,, . Theotheris w, ® t,~!, where 7, is the time it takes for
an electron to travel a charscteristic distance k~! along x
(WBL]. From the field-line equation

dz dx
B = B (Bl7)
] x
it follows that if &1 electron wavels k' along x, it must travel z,
along z, where 2, is given by the relation
22 = AP {1 -exp ). (B18)

We then obtain (WBL)
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= “v exp (/KN) . (B19)

We introduce the strained inner variable

H 1
g:-a-:z;, (B20)

where §,= (0/kv,) (L/sq) and sg=1 if @,> 0, (asin
region 3), but 5o = W/, if ®,< &, (as inregion 2). The shear
length L, is defined by L,s A B(z =0) By. With these
definitions, (B16) can be rewritten as

where ag=28,(0)/By . €= 8,(0)8y. and

(1-0"/) 828k

’

£H = — Z@&H., @2
ay + €
which is the same as (77) of WBL.

Equation (B21) can be diagonalized as
2 a, G.2+£2 0 a
ii ) = 1% o ( J (B23)
€\ 24 o o J\%
a = oy + EX, (B24)

02 = -Eo.\i + Goi. (325)
As shown by WBL, a; (i =0) =0, which yields

VO = (a/g) 1(0). (B26)

The solution for a; is different in different regions.

In region 1, where yt, << 1, the integration over z involves a
bounce sverage which extends over the outer region. We can
then see the stabilizing effect of this bounce by noting that it
tends to cancel out the perurbed current in the inner region and
gives ¥ = x=0. Inregions 2 and 3, however, we have 1, 2 1
and yt, >> 1, respectively. Integrating (B23) over the inner
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region, and using the "constant W¥" approximation, we get the
Jump conditon
de, 2
@D a0 [amn. @

d§ ina ianer

In order 1o match the inner region to the outer region, we use the
relations
ALy oL |77, @28
1 " dz OBY el Tdr OBY e e

osdigr o=t wmi | mw
2 5 dr OBX gl T B loa

The left-hand side of (B27) can then be written as

AL e e
df ioner ¢ dﬁm - ¢ dgm
=35, [ao V(0) 8, +£,X(0) A, ] (B30)
The right-hand side of (B27) gives
0
400 d& |
e - [ e =2st3 | A
inner —o0 E=l/s

28] k3 (1 - /@)
= - A0) . (B31)

g + &g

Using (B30) and (B31), we obtain the dispersion equation

kv A'S *
D(ko) =—2— + (x-"l Z0) =0, (B32)
2k L, © o

where

2.0 20

Oy Al +&4,
& m . (B33)

% +g

Equation (B32) is slightly different from the snalogous equation
derived by WBL. The difference can be atrributed primarily to
a slightly different teatment of the asymptotic matching
condition; here we have extended the outer solution all the way to
2 =0 instead of taking it to the outer limits of the inner region.
In the rotation of WBL, A’ = A, +i A]; however, if we recall that
A] ~g << 4}, itis clear that the results derived by WBL and here
do not differ significandy. (In order o avoid possible
confusion, we point out that @* has been neglected in certain
results derived in WBL; this affects the real part of ®, but not
the growth rate.) Solving the dispersion equation (B32), we
obtain @, andy, given, respectively, by (103) and (104) in

region 2 and (105) and (106) in region 3.
The growth rate derived from kinetic theory can also be
obtained from the fluid model. The fluid analog of (106) has
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already been derived in section 3. Here we derive easily the
anolog of (104), Recalling the heuristic discussion given by
WBL (see section 3, WBL), we have Y~ ®, = W, kyv, /o, =
o eIzd,/O.m.). Here d, = A}/2Kk; ., which is obtained from (68).
with A, given by (88). If we now use (B2S5), we get (110)
which is larger than the growth rate derived from kinetic theory
by the factor xl7Z,
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